
イベントトップに戻る
![]()
参加費(税抜き価格)
| SEMI会員 | 一般 | 学生 | |
| Early Bird(9/17〜10/31) ※オンライン対象外 | 24,000円 | 48,000円 | 4,000円 |
| Regular Price(11/1〜) | 30,000円 | 60,000円 | 5,000円 |
※講演資料 事前ダウンロードリンク付き
AI時代の到来により、次世代ロジック、メモリーが注目されており、半導体材料の革新が求められています。SMC Japanでは、デバイスメーカー、材料メーカー、AIプラットフォーマーが半導体材料の未来について、多角的に議論します。
※プログラムは都合により変更となる場合がございます。予めご了承ください。
セッションチェア:
下木 有生(デュポン ジャパン)
花村 政暁(JSR)
池内 孝敏(レゾナック)
Heidi Hoffman(SEMI)
※英語社名アルファベット順
概要文が入ります。
China has rapidly advanced in semiconductor technology, now ranking second globally behind the United States, surpassing South Korea in key areas like AI chips, power semiconductors, and high-density storage . Despite U.S. export controls, China’s leading players have made significant breakthroughs. Foundries like SMIC have achieved stable 7nm production, while Yangtze Memory and CXMT are boosting domestic storage chip self-sufficiency. Chinese leading technology players are also making massive investments into AI and chips. Innovations like Chiplet packaging and carbon-based semiconductors further enhance performance while circumventing advanced node limitations . The emerging of leading China AI players has narrowed the gap with the U.S. Open-source pioneers like DeepSeek and Alibaba have demonstrated their commitment into AI training and reference. DeepSeek’s R1 model rivals OpenAI’s offerings, and China dominates in multimodal AI, achieving parity in text-to-image generation and nearing U.S. levels in video synthesis . Companies like ByteDance and Tencent leverage massive user data for refining models, while startups like Moonshot AI innovate in long-context processing . AI integration into industries—manufacturing, healthcare, and smart cities—showcases practical gains, such as predictive maintenance and AI-assisted diagnostics . Challenges persist, including EUV lithography dependency and high-end AI chip shortages . However, China’s "scenario-driven" approach, combining policy support, talent cultivation, and open-source collaboration, positions it to lead in scalable AI applications and next-gen semiconductors like quantum and photonic chips . This systematic progress underscores China’s transformative role in global tech.
China has rapidly advanced in semiconductor technology, now ranking second globally behind the United States, surpassing South Korea in key areas like AI chips, power semiconductors, and high-density storage . Despite U.S. export controls, China’s leading players have made significant breakthroughs. Foundries like SMIC have achieved stable 7nm production, while Yangtze Memory and CXMT are boosting domestic storage chip self-sufficiency. Chinese leading technology players are also making massive investments into AI and chips. Innovations like Chiplet packaging and carbon-based semiconductors further enhance performance while circumventing advanced node limitations . The emerging of leading China AI players has narrowed the gap with the U.S. Open-source pioneers like DeepSeek and Alibaba have demonstrated their commitment into AI training and reference. DeepSeek’s R1 model rivals OpenAI’s offerings, and China dominates in multimodal AI, achieving parity in text-to-image generation and nearing U.S. levels in video synthesis . Companies like ByteDance and Tencent leverage massive user data for refining models, while startups like Moonshot AI innovate in long-context processing . AI integration into industries—manufacturing, healthcare, and smart cities—showcases practical gains, such as predictive maintenance and AI-assisted diagnostics . Challenges persist, including EUV lithography dependency and high-end AI chip shortages . However, China’s "scenario-driven" approach, combining policy support, talent cultivation, and open-source collaboration, positions it to lead in scalable AI applications and next-gen semiconductors like quantum and photonic chips . This systematic progress underscores China’s transformative role in global tech.
半導体市場は生成AI向けデバイスの拡大により、外部環境が不透明ななかにあって金額ベースでの市場規模は安定した推移を示している。設備投資サイドでは2022年以降は中国が牽引、2026年以降は米国での半導体設備投資も増加が見込まれる。市場は安定しているなかにあってリスクも蓄積している。本講演では今後の半導体設備投資見通しおよびリスクについて俯瞰してみたい。
Silicon interposer technology has matured into a reliable and widely adopted solution for advanced semiconductor packaging. It enables high-density integration and efficient signal routing between chips. However, as chip sizes continue to grow, the traditional 12-inch round silicon wafers face limitations in terms of die yield and material utilization. The circular format often results in wasted silicon real estate, especially when accommodating rectangular device chips. To address this inefficiency, square or rectangular substrates—similar to glass panels—are being considered as a viable alternative to extend the lifecycle of silicon interposer technology. These formats align more closely with the shape of most semiconductor devices, potentially improving layout efficiency and reducing material waste. Despite their advantages, glass panels present several manufacturing challenges, including difficulties in through-via hole drilling, mechanical fragility, susceptibility to breakage, and risks of metal contamination. In contrast, silicon panel wafers offer a robust and compatible solution, mitigating many of these issues while supporting advanced packaging requirements. As packaging density increases, thermal management has become a critical concern. Efficient heat dissipation is essential to maintain device performance and reliability. To meet this need, various materials—particularly non-silicon and metallic compounds—have been explored. GlobalWafers Corporation (GWC) has successfully developed three types of silicon carbide (SiC) wafers: Single Crystal SiC, CVD Polycrystalline SiC, and Sintered Polycrystalline SiC. These materials are well-suited for thermal applications such as SiC interposers and heat sinks, offering superior thermal conductivity and mechanical strength.
概要文が入ります。
Rapidusが進める先端半導体の開発および量産化において、半導体材料は極めて重要な役割を担っている。本講演では、次世代デバイス実現に不可欠な材料の観点から以下を論じる。 (1) 2nm/1.4nm世代の先端半導体に要求される材料技術 (2) 開発のボトルネックとなりつつある材料課題とその解決に向けた方向性 (3) Rapidusと材料サプライヤーによる共創的アプローチ (4) サステナビリティ実現に向けた取り組みと展望
High performance computing for AI has replaced smartphone and PC as the biggest driver for advanced logic processes. This presents new set of challenges. We will discuss several key areas that presents both challenges and opportunities for the semiconductor materials suppliers, including new transistor structure (GAA), new interconnect architecture (back-side power rail) and interconnect materials (Ru, Mo), performance improvement through new EUV resist (MOD based EUV dry and wet resist), advanced packaging materials, and new materials for thermal management. We will also discuss the ever-harder task of achieving high yield as node transition continues, and present new contamination control technologies as the key enabler for yield enhancement.
概要文が入ります。
先端ロジック・材料技術の進展に伴い後工程プロセスの革新が重要性を増している。特に高密度実装や多機能化を支える先進半導体パッケージング技術は性能向上の鍵を握る。本講演では先進的な半導体パッケージング技術の最新動向を紹介する。
近年の生成AI普及に伴い、特に推論用途を中心にストレージ市場は今後も拡大が見込まれています。当社では、高性能、大容量、低消費電力など多様化するストレージニーズに対応するため、競争優位性のあるBiCS FLASH™の開発を進めています。技術動向に加え、デバイス性能由来の材料への期待など、その展望をお話しします。
三井化学が取り組んでいる次世代先端半導体パッケージ向け材料開発の状況、および今後の展望について紹介する。
概要文が入ります。
EUV-CARは今日の先端半導体の大規模量産を支える基幹技術であり、歩留まり改善においてTMAH現像処理後の水系リンス材による表面処理は必要不可欠な工程である。本公演では、EUV-CARにおける水系リンス材の役割と求められる性能、および性能評価方法について紹介する。
半導体材料の研究開発において、生成AIやクラウドの活用が新たなブレークスルーをもたらそうとしています。本セッションでは、生成AIの活用やグローバルパートナー企業との迅速なコラボレーションなど、研究開発プロセスの革新に寄与する具体的なソリューションを事例を交えてご紹介します。クラウドの柔軟性と拡張性、そして生成AIを組み合わせる事で実現する、コスト効率の高い研究開発環境の実現方法について、実践的な知見をお伝えします
The semiconductor supply chain is facing new challenges as the electronics industry changes in 2025. Suppliers must adapt to new geopolitical realities, shifting supply chains, and ever more challenging technology requirements. We will review some of the issues and developments.
大規模言語モデルや暗号資産等の拡大に伴う演算処理量の急速かつ大幅な増大を背景とした、半導体及び情報処理システムの低遅延化及び低消費電力化の両立に貢献する、我が国の半導体材料(EUV光源リソグラフィ関連材料や高密度実装関連材料等)の市場の変化等について考察する。
概要文が入ります。